The Frequency-Dependent Neuronal Length Constant in Transcranial Magnetic Stimulation
نویسندگان
چکیده
BACKGROUND The behavior of the dendritic or axonal membrane voltage due to transcranial magnetic stimulation (TMS) is often modeled with the one-dimensional cable equation. For the cable equation, a length constant λ0 is defined; λ0 describes the axial decay of the membrane voltage in the case of constant applied electric field. In TMS, however, the induced electric field waveform is typically a segment of a sinusoidal wave, with characteristic frequencies of the order of several kHz. OBJECTIVE To show that the high frequency content of the stimulation pulse causes deviations in the spatial profile of the membrane voltage as compared to the steady state. METHODS We derive the cable equation in complex form utilizing the complex frequency-dependent representation of the membrane conductivity. In addition, we define an effective length constant λeff, which governs the spatial decay of the membrane voltage. We model the behavior of a dendrite in an applied electric field oscillating at 3.9 kHz with the complex cable equation and by solving the traditional cable equation numerically. RESULTS The effective length constant decreases as a function of frequency. For a model dendrite or axon, for which λ0 = 1.5 mm, the effective length constant at 3.9 kHz is decreased by a factor 10 to 0.13 mm. CONCLUSION The frequency dependency of the neuronal length constant has to be taken into account when predicting the spatial behavior of the membrane voltage as a response to TMS.
منابع مشابه
Non-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کاملSafety and Therapeutic Effects of Repetitive Transcranial Magnetic Stimulation and Behavior Therapy in a Pregnant Woman: Case Report
In this study, the authors reported a case of woman with severe compulsion who became pregnant during the Repetitive transcranial magnetic stimulation. We carried out Repetitive transcranial magnetic stimulation and behavior therapy simultaneously after repeated medications' refraction. The patient received 20 sessions 1 Hz Repetitive transcranial magnetic stimulation in right dorsolateral pref...
متن کاملThe Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain
Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...
متن کاملEffects of High-Frequency Repetitive Transcranial Magnetic Stimulation on Motor Functions in Patients with Subcortical Stroke
Background: Motor function impairment occurs in approximately two-thirds of patients with subcortical stroke. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique for modulating cortical excitability. Objectives: The present study was designed for assessing the efficacy of high-frequency rTMS (5 Hz) on ipsilesional primary motor cortex in patients with subcortical stro...
متن کاملThe Effect of rTMS with Rehabilitation on Hand Function and Corticomotor Excitability in Sub-Acute Stroke
Objectives: Stroke is the leading cause of long-term disability. Hand motor impairment resulting from chronic stroke may have extensive physical, psychological, financial, and social implications despite available rehabilitative treatments. The best time to start treatment for stroke, is in sub-acute period. Repetitive transcranial magnetic stimulation (rTMS) is a method of stimulating and ...
متن کامل